16 research outputs found

    A new Backdoor Attack in CNNs by training set corruption without label poisoning

    Full text link
    Backdoor attacks against CNNs represent a new threat against deep learning systems, due to the possibility of corrupting the training set so to induce an incorrect behaviour at test time. To avoid that the trainer recognises the presence of the corrupted samples, the corruption of the training set must be as stealthy as possible. Previous works have focused on the stealthiness of the perturbation injected into the training samples, however they all assume that the labels of the corrupted samples are also poisoned. This greatly reduces the stealthiness of the attack, since samples whose content does not agree with the label can be identified by visual inspection of the training set or by running a pre-classification step. In this paper we present a new backdoor attack without label poisoning Since the attack works by corrupting only samples of the target class, it has the additional advantage that it does not need to identify beforehand the class of the samples to be attacked at test time. Results obtained on the MNIST digits recognition task and the traffic signs classification task show that backdoor attacks without label poisoning are indeed possible, thus raising a new alarm regarding the use of deep learning in security-critical applications

    A Message Passing Approach for Decision Fusion in Adversarial Multi-Sensor Networks

    Full text link
    We consider a simple, yet widely studied, set-up in which a Fusion Center (FC) is asked to make a binary decision about a sequence of system states by relying on the possibly corrupted decisions provided by byzantine nodes, i.e. nodes which deliberately alter the result of the local decision to induce an error at the fusion center. When independent states are considered, the optimum fusion rule over a batch of observations has already been derived, however its complexity prevents its use in conjunction with large observation windows. In this paper, we propose a near-optimal algorithm based on message passing that greatly reduces the computational burden of the optimum fusion rule. In addition, the proposed algorithm retains very good performance also in the case of dependent system states. By first focusing on the case of small observation windows, we use numerical simulations to show that the proposed scheme introduces a negligible increase of the decision error probability compared to the optimum fusion rule. We then analyse the performance of the new scheme when the FC make its decision by relying on long observation windows. We do so by considering both the case of independent and Markovian system states and show that the obtained performance are superior to those obtained with prior suboptimal schemes. As an additional result, we confirm the previous finding that, in some cases, it is preferable for the byzantine nodes to minimise the mutual information between the sequence system states and the reports submitted to the FC, rather than always flipping the local decision

    A Game-Theoretic Framework for Optimum Decision Fusion in the Presence of Byzantines

    Full text link
    Optimum decision fusion in the presence of malicious nodes - often referred to as Byzantines - is hindered by the necessity of exactly knowing the statistical behavior of Byzantines. By focusing on a simple, yet widely studied, set-up in which a Fusion Center (FC) is asked to make a binary decision about a sequence of system states by relying on the possibly corrupted decisions provided by local nodes, we propose a game-theoretic framework which permits to exploit the superior performance provided by optimum decision fusion, while limiting the amount of a-priori knowledge required. We first derive the optimum decision strategy by assuming that the statistical behavior of the Byzantines is known. Then we relax such an assumption by casting the problem into a game-theoretic framework in which the FC tries to guess the behavior of the Byzantines, which, in turn, must fix their corruption strategy without knowing the guess made by the FC. We use numerical simulations to derive the equilibrium of the game, thus identifying the optimum behavior for both the FC and the Byzantines, and to evaluate the achievable performance at the equilibrium. We analyze several different setups, showing that in all cases the proposed solution permits to improve the accuracy of data fusion. We also show that, in some instances, it is preferable for the Byzantines to minimize the mutual information between the status of the observed system and the reports submitted to the FC, rather than always flipping the decision made by the local nodes as it is customarily assumed in previous works

    RoSe: A RObust and SEcure Black-Box DNN Watermarking

    Get PDF
    International audienceProtecting the Intellectual Property rights of DNN models is of primary importance prior to their deployment. So far, the proposed methods either necessitate changes to internal model parameters or the machine learning pipeline, or they fail to meet both the security and robustness requirements. This paper proposes a lightweight, robust, and secure black-box DNN watermarking protocol that takes advantage of cryptographic one-way functions as well as the injection of in-task key imagelabel pairs during the training process. These pairs are later used to prove DNN model ownership during testing. The main feature is that the value of the proof and its security are measurable. The extensive experiments watermarking image classification models for various datasets as well as exposing them to a variety of attacks, show that it provides protection while maintaining an adequate level of security and robustness

    Luminance-based video backdoor attack against anti-spoofing rebroadcast detection

    Get PDF
    We introduce a new backdoor attack against a deep-learning video rebroadcast detection network. In addition to the difficulties of working with video signals rather than still images, injecting a backdoor into a deep learning model for rebroadcast detection presents the additional problem that the backdoor must survive the digital-to-analog and analog-to-digital conversion associated to video rebroadcast. To cope with this problem, we have built a backdoor attack that works by varying the average luminance of video frames according to a predesigned sinusoidal function. In this way, robustness against geometric transformation is automatically achieved, together with a good robustness against luminance transformations associated to display and recapture, like Gamma correction and white balance. Our experiments demonstrate the effectiveness of the proposed backdoor attack, especially when the attack is carried out by also corrupting the labels of the attacked training samples

    A Game-Theoretic Approach for Adversarial Information Fusion in Distributed Sensor Networks

    No full text
    Every day we share our personal information through digital systems which are constantly exposed to threats. For this reason, security-oriented disciplines of signal processing have received increasing attention in the last decades: multimedia forensics, digital watermarking, biometrics, network monitoring, steganography and steganalysis are just a few examples. Even though each of these fields has its own peculiarities, they all have to deal with a common problem: the presence of one or more adversaries aiming at making the system fail. Adversarial Signal Processing lays the basis of a general theory that takes into account the impact that the presence of an adversary has on the design of effective signal processing tools. By focusing on the application side of Adversarial Signal Processing, namely adversarial information fusion in distributed sensor networks, and adopting a game-theoretic approach, this thesis contributes to the above mission by addressing four issues. First, we address decision fusion in distributed sensor networks by developing a novel soft isolation defense scheme that protects the network from adversaries, specifically, Byzantines. Second, we develop an optimum decision fusion strategy in the presence of Byzantines. In the next step, we propose a technique to reduce the complexity of the optimum fusion by relying on a novel nearly-optimum message passing algorithm based on factor graphs. Finally, we introduce a defense mechanism to protect decentralized networks running consensus algorithm against data falsification attacks

    RoSe: A RObust and SEcure Black-Box DNN Watermarking

    No full text
    International audienceProtecting the Intellectual Property rights of DNN models is of primary importance prior to their deployment. So far, the proposed methods either necessitate changes to internal model parameters or the machine learning pipeline, or they fail to meet both the security and robustness requirements. This paper proposes a lightweight, robust, and secure black-box DNN watermarking protocol that takes advantage of cryptographic one-way functions as well as the injection of in-task key imagelabel pairs during the training process. These pairs are later used to prove DNN model ownership during testing. The main feature is that the value of the proof and its security are measurable. The extensive experiments watermarking image classification models for various datasets as well as exposing them to a variety of attacks, show that it provides protection while maintaining an adequate level of security and robustness

    RoSe: A RObust and SEcure Black-Box DNN Watermarking

    No full text
    International audienceProtecting the Intellectual Property rights of DNN models is of primary importance prior to their deployment. So far, the proposed methods either necessitate changes to internal model parameters or the machine learning pipeline, or they fail to meet both the security and robustness requirements. This paper proposes a lightweight, robust, and secure black-box DNN watermarking protocol that takes advantage of cryptographic one-way functions as well as the injection of in-task key imagelabel pairs during the training process. These pairs are later used to prove DNN model ownership during testing. The main feature is that the value of the proof and its security are measurable. The extensive experiments watermarking image classification models for various datasets as well as exposing them to a variety of attacks, show that it provides protection while maintaining an adequate level of security and robustness
    corecore